
1280 . IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 4, JULY 1993 

Universal Schemes for Sequential Decision 
from Individual Data Sequences 

Neri Merhav, Senior Member, IEEE, and Meir Feder, Senior Member, IEEE 

Abstract-Sequential decision algorithms are investigated, un- 
der a hmily of additive performance criteria, for individual 
data sequences, with varieus appliition areas in information 
theory and signal processing. Simple universal sequential schemes 
are known, under certain conditions, to approach optimality 
uniformly as fast as n-l log n, where n is the sample size. For 
the case of finite-alphabet observations, the class of schemes 
that can be implemented by bite-state machines (FSM’s), is 
studied. It is shown that Markovian machines with d a e n t l y  
long memory exist that are asympboticaily nerrly as good as 
any given FSM (deterministic or W o m h I )  for the purpose of 
sequential decision. For the continuous-valued observation case, 
a useful class of parametric schemes is discussed with special 
attention to the recursive least squares W) algorithm. 

Index Terms-Sequential compound decision pmblem, empiri- 
cal Bayes estimation, Bayes envelope; Bayes response, tinipstate 
machines, LempeLZiv algorithm, recursive least squares. 

I. INTRODUCTION 

ANY different problems that arise in information the- M ory, signal processing, and control theory have the 
following generic form. An observer receives serially a se- 
quence of measurements z ; , x 2 , . . . .  At each time t, that 
is, after seeing 2t-1,  he selects a strategy bt from a given 
class B of permissible strategies, and the task is to minimize 
the long run time-average n-l I (b t , z t )  of a given loss 
function l ( - ,  e ) .  If the measurements {zt} are governed by a 
known stationary ergodic probabilistic source and B allows 
any measurable function bt of the past ( 2 1 ,  - e , zt--l), then 
the best strategy in the sense of minimizing the expected value 
of the time-average of the loy is clearly one that attains (or 
approaches) the least conditional expectation of Z(bt, xt) given 
the past. Moreover, this minimum loss is attainable almost 
surely [2] subject to certain regularity conditions on the loss 
function, even if the statistics of the source are not known a 
priori. 

In this paper, we are concerned with the same sequential 
decision problem but in a deterministic rather than a prob- 
abilistic setting. The sequence 21, 2 2 ,  e . e is considered as 
an individual, deterministic entity without any assumptions 
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on the existence of an underlying statistical model. On the 
other hand, in order to incorporate in our model real-life 
limitations on computational power and memory resources, 
we confine the class B of the allowable nonanticipating 
strategies to certain structures with a limited number of degrees 
of freedom. Common examples of such classes include the 
class of strategies - , ~ ~ - 1 )  that are implementable by 
deterministic finite-state machines (FSM’s) (see, e.g., [ll], 
[12], [%I-[26], [34], [49], [53]), parametric functions of the 
near past (in particular, linear functions [36], [38]), neural 
networks, etc. 

For the case of FSM’s, earlier work on data compression 
[53], gambling [ll], and prediction [12] inspire the following 
extended setting of the deterministic sequential decision prob- 
lem. For the first n outcomes 51, . e e , z,, let u ~ ( z 1 ,  e e e , 2,) 
be the minimum loss incurred by the best strategy that can 
be realized by a machine with M states (A4 < n). The limit 
supremum of this quantity as n + 00, that is u ~ ( z 1 ,  2 2 ,  a) ,  

describes the least asymptotic loss that an M-state strategy 
can guarantee. Finally, 

is the least asymptotic loss achievable by an FSM with 
arbitrarily many states. While in this definition, the sequence of 
optimal M-state strategies may depend on the entire particular 
sequence of observables, we are primarily interested in a 
universal sequential decision scheme (strategy) that is indepen- 
dent of the particular sequence and yet attains U ,  (21, 2 2 , .  e )  

in the long run. Later on we investigate the same problem when 
the class of strategies is extended to that of al l  randomized 
M-state machines. Analogous problems arise for parametric 
classes of strategies as described above. As an intermediate 
goal in the first problem, we seek a universal sequential 
strategy that asymptotically attains u1(z1, . - . , zn) ,  i.e., a 
scheme that is nearly as good as the best fired (single-state) 
strategy for the given sequence. 

It has been observed in some particular applications, that 
%the dynamic selection of a strategy that best matches the data ’ 
observed sofar is asymptotically as good aS the best fixed 
strategy that one could have used in retrospect. Moreover, 
in many cases, the performance of this dynamic strategy is 
within O(n-’ logn) close to optimality, uniformly for every 
possible data sequence of length n. Several useful examples 
of the deterministic sequential decision problem, where this 
phenomenon takes place, are the following. 

The first example is related to universal data compression. 
Let zn = ( q , 2 2 , .  . ,z,) be a given binary string to be 
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compressed. Let nt(0) and n t ( l )  denote counts of “0” and 
“1,” respectively, among the t first symbols of 2” (t 5 n).  
Define p t ( z )  = (nt(z) + 1/2)/(t + l), z = 0,1, as the 
respective (biased) empirical probabilities of “0” and “1.” A 
simple application of Stirling’s formula (see, e.g., [31]) shows 
that 
. n  
1 
- -logPt-l(zt) 

t=l 

where logarithms throughout the sequel are taken to the 
base 2 unless specified otherwise. The left-hand side of (1) 
corresponds to the normalized length of a codeword associated 
with a sequential optimal Shannon encoder which is based on 
current empirical letter probabilities from data observed so 
far. This length can be attained using, e.g., arithmetic coding 
techniques [33]. The first term on the right hand side of (1) is 
the empirical entropy associated with z”, which corresponds 
to the minimum normalized codeword length associated with 
a fixed codebook that one could have achieved for a particular 
2” if he knew in advance { ~ ~ ( z ) } ~ = o , l .  The O(n-’logn) 
term in (1) is the loss in performance due to sequentiality 
(see also [30], [31], [41], [42], [45]). Observe that (1) can be 
formalized as sequential minimization of n-l Cy=l Z(b, z t ) ,  
where the per-letter loss function Z(b, z) is given in this case 
by 

- log b, x = Q ,  
-lOg(l - b), x = 1, 

Z(b, x) = 

where the best choice of b E (0,1] in the sense of minimizing 
(t - 1)-l E“,=, - logZ(b,z,) is b = nt(0)/t which is nearly 

Another interesting application of (1) and (2) is sequential 
gambling (see, e.g., [5], [ll],  [29]) where at each round t the 
player doubles the fraction of the current capital St wagered 
on the next outcome, i.e., St+l = 2bSt if xt+l = 0 and 
St+l = 2(1 - b)St if zt+l = 1. It is easy to see that the 
exponential growth rate n-l log S, of the capital is the time- 
average of 1 - Z(b, zt), where Z(., .) is as in (2) and hence eq. 
(1) is meaningful for gambling as well. 

Portfolio selection for optimal investment [ 11-(3],[6] can be 
viewed as an extension of the previously described gambling 
problem, where the current capital St is distributed over m 
investment opportunities according to some portfolio b E Ht“, 
a column vector of nonnegative weights summing to unity. The 
stock market on day t is characterized by a column vector 
zt E R” with nonnegative components, zt representing the 
return per monetary unit allocated to stock i on day t. The 
yield per unit invested is the weighted average of return 
ratios, i.e., the inner product b#xt, where # denotes vector 
transposition. Thus, S,  = So ny=l(b#zt) is the compounded 
capital after n investment days. Equivalently, the exponential 
growth rate n-’ log S,  of the capital is the time-average of 
Z(b, zt) = log(b#zt). In [6] a sequential portfolio selection 
scheme has been proposed for arbitrary bounded sequences of 
market vectors, which is again as good as the optimal fixed 

Pt-l(O). 

investment policy up to a term of O(n-l log n). The proof in 
[6], however, relies heavily on special properties of the per- 
letter loss function Z(b, z) = log(b#z), considered in this 
specific case. 

In [12] a result in the same spirit has been established 
for the problem of universal prediction of binary sequences, 
where predictors have been sought that uniformly minimize 
the fraction of prediction errors. The strategy b at time t is 
a choice of an estimate ft+l of the next outcome zt+l and 
Z(&+l, zt+l)  is the indicator function for # zt+l (i.e., 
the Hamming distance). Again, the techniques for deriving the 
results in [12] are specific to this particular loss function. It 
should be pointed out that the results in [ 121 are different from 
these of Ryabko [45], who focused on a probabilistic setting 
and considered the prediction problem as that of reliable 
estimation of the conditional probabilities of future outcomes, 
given the past, rather than that of estimating the outcomes 
themselves. 

When A4 = 1, the previous examples can all be viewed 
as special cases of a more general setting, referred to as 
the sequential compound decision problem, which was first 
presented by Robbins [41] and has been thoroughly investi- 
gated later by many researchers (see, e.g., [4], [14]-[16], [21], 
[22], [39], [46], [47], [51], [52]). The setup of the sequential 
compound decision problem is somewhat more general in the 
sense that the observer may access only noisy versions of the 
measuremefits {zt} that appear in the loss function. Hannan 
[21] developed in the game theoretic level upper bounds on the 
decay rate of the difference between the average loss (or risk) 
associated with the best sequential strategy and that of the best 
fixed strategy. He has shown a convergence rate of O ( T Z - ~ / ~ )  
in the finite-alphabet, finite-strategy space case, and a rate of 
O(n-’ t-”) in the continuous case, provided that the 
loss minimizing strategy b*, as a functional of the underlying 
empirical measure (i.e., the Bayes response), satisfies a Lips- 
chitz condition of order (I! > 0. For a = 1, this means a rate 
of O(n-’ logn). Van Ryzin [51] has shown that even in the 
former case the convergence rate can be more tightly upper 
bounded by O(n-’ log n) under some regularity conditions 
on the channel through which the observer receives the noisy 
measurements. Gilliland [ 151 further investigated convergence 
rates for the special case of squared-error-loss estimation, i.e., 
Z(b,z) = (b - x ) ~ ,  under various assumption sets. 

Swain [50], Johns [B], Gilliland and Hannan [17], Cover 
and Shenhar [7], Nogami [39], and Vardeman [52] have 
extended the scope of the sequential compound decision 
problem and developed sequential decision procedures whose 
performance is almost as good as that of the best kth- 
order Markovian (rather than k e d )  strategy, i.e., the best 
strategy that depends at time t on the k preceding outcomes 
X t - k ,  Z t - k + l , .  - , and hence results in an average loss 
no greater than that of the best fixed strategy. While the 
Markovian strategy is intuitively appealing and plausible when 
the sequence is known to have a “Markov structure ” [7], [32], 
it has not yet been justified rigorously for a general arbitrary 
sequence considered here. 
As mentioned earlier, we study here the more general 

class of finite-state strategies. In fact, one important result 
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in this work links the performance attainable by the best 
kth-order Markovian strategy to that of the best M-state 
strategy Specifically, we assume that {st} are directly acces- 
sible without noise and extend Theorem 2 of [12], showing 
( S d o n  III) that for a given M-state machine, one can pick 
a sufficiently large k that is independent of the sequence, 
such that the best kth-order Markov machine performs to 
within E as well as the M-state machine. This means that 
in the limit of indefinite increase in the number of states, a 
Markovian machine is as good as the best deterministic FSM. 
As a result, one can gradually increase the Markov order at 
a logarithmic rate independently of the particular sequence, 
and guarantee convergence to 26, ( 2 1 ,  22, . a ) .  In Section IV, 
this result is further extended, and it is shown that Markovian 
machines with sufficiently long memory compete successfully 
with every randomized FSM in the sense of minimizing the 
expected value of n-l Cy=l Z(bt, xt), where the expectation 
is with respect to the randomization. 

This property of Markovian strategies is utilized in or- 
der to relate the least asymptotic loss achievable by FSM's 
over individual sequences to that of the probabilistic case 
where any limitations on the allowed nonanticipating strategies 
are relaxed. Specifically, following Algoet [2], where the 
Shannon-McMillan-Brieman theorem has been extended to 
a general sequential d q i o n  problem under a stationary 
ergodic regime, we show that these two quantities agree with 
probability one over an infinite sequence. This extends a result 
in the same spirit in the case of lossless coding [53]. 

Markovian schemes are useful also in continuous alphabet 
applications (Section V). One widespread example is pre- 
diction under the mean-squared error (mse) criterion, i.e., 
Z(bt, zt) = (zt - bt)2,  where the strategy (namely, the 
predictor) bt is given by a function f(zt--k, a ,  zt -1)  of the 
IC most recent outcomes, e.g., a linear predictor [36], where 
f ( z t - k , .  . - , zt-l)  = E:=, cizt-;. The sequential version 
of this linear predictor leads to the recursive least squares 
(RLS) algorithm, which is here shown to be universal in 
the previous sense. Another example is vector quantization 
(VQ) (see e.g., [19], [27], [35], [37]), where z E Pt" and 
Z(b, z) = d(s,Qb(x)),  d ( . , . )  being a distortion measure 
and &a(.) a quantization function with quantization cells and 
centroids parametrized by b. Again, by allowing b to depend 
on the IC preceding samples (or their quantized versions), we 
can implement a family of vector quantizers with memory 
[19], e.g., feedback quantizers, predictive quantizers, finite- 
state quantizers, etc. 

11. FIXED STRATEGY 

We start from some preliminaries and provide a suffi- 
cient condition for a sequential procedure to perform within 
O(n-lZogn) as well as the best fixed strategy. This condition 
is not entirely new and has appeared in several variations (see, 
e.g., [14], [16], [21], [46], [51]) for the finite alphabet case 
and the continuous alphabet case separately. Here, for the 
sake of convenience, we formulate it in a unified way that 
is suitable for both cases. This will serve as a background for 
the derivations that follow in Sections 111, IV, and V. 

' 
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Consider an arbitrary (deterministic) sequence of obser- 
vations zn = ( $ 1 ,  z2,.-.,2i,...,xn), xi taking values in 
some alphabet X. An observer wishes to select a member b 
from a set B of permissible strategies so as to minimize the 
time-average of a certain loss function Z(b, zt), i.e., attain 

(3) 

Unfortunately, since the best strategy b z  that attains u(zn) 
depends, in general, on the entire sequence zn, it cannot be 
found in a sequential manner. A natural dternative is to adapt 
the strategy b, at each time instant t (before seeing zt) ,  to the 
data observed so far, i.e., to use at time t a strategy br-, that 
minimizes the quantity 

. t - 1  

(4) 

and an arbitrary strategy at time t = 1. The basic fact that is 
shown in this section is that, under certain regularity condi- 
tions, the sequence of strategies {b:-l}&l is asymptotically 
as good as b t .  More precisely, let 

Then, the difference G(z") - u(zn) vanishes as fast as 
n-l logn, uniformly for every sequence zn. This claim 
holds true whether or not u(zn) and G(zn) converge as 
n --t 00. Hence, no assumptions concerning asymptotic mean 
stationarity [20] and ergodicity of an underlying probability 
measure are required. 

To formulate regularity conditions on Z(.,-) it will be 
convenient to consider the empirical probability measure, 
P, = n-' S,,, (where S,, z E X, is the unit point 
mass at z) and to regard time-averages as expectations with 
respect to P,, e.g., n-l Z(b,xt) = Ep,,Z(b,X), where 
X denotes a random variable (governed by P,). 

Let P be a probability measure defined on a measure space 
( X , F ) ,  F being a sigma-field generated from subsets of X. 
Assume that P belongs to a set P of probability measures 
defined as P { P  : 3b E B, EpZ(b,X) < CO} and let 

In the sequel, when we would like to stress the dependency of 
U(X) upon P, we shall denote it by U(P) with a slight abuse 
of notation. This quantity, called the Bayes envebpe (see, e.g., 
[46]), can be thought of as a generalized notion of the entropy 
since in the special case (2) it agrees with the binary Shannon 
entropy. (This may serve as an intuitive explanation of the 
fact that sequential decision procedures have been proposed 
to assess the degree of "randomness" of a sequence [48]). It 
is very easy to see that U ( P )  is always a concave functional 
[16]. Of course when P is the empirical measure P,, then 
U(P,) = u(2,). 

The following assumption on I ( . ,  .) will be made. 
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I K ,  (7) 

AsszunptionA: If P E P, then the infimum (6) is 
also a minimum, and there exists a minimizer b*(P), i.e., 
EpZ(b*(P),X) = U ( P ) ,  such that for every P E P and 
2 E x, 

for some K < CO. 

Assumption A is a version of the Lipschitz condition on 
Z(b*(.) ,z)  as a functional of P, where distances between 
probability measures are restricted to convex combinations 
with unit point mass measures. The supremum over a can 
be replaced by a limit as a + O+ (Gateaux derivative), 
resulting in a slightly weaker version of the assumption A, 
at the expense of restricting I(.,.) to be bounded. In the 
finite-alphabet case, Gilliland and Helmers [16, Theorem 21 
provide necessary and sufficient conditions for Z( b* (P) , z) 
being continuous w.r.t. P in the "direction" (1 - a)P + a&. 
It is easy to imply from the proof of [16, Theorem 21 (see also 
Samuel [46]) that in the finite-alphabet case, Assumption A is 
equivalent to the condition that U(P) has derivatives w.r.t the 
letter probabilities, and they all satisfy a first-order Lipschitz 
condition. 

The following theorem provides bounds on the average 
loss ii(zn) associated with the sequential strategy selection 
procedure bf-, e b*(Pt-l), in terms of the loss associated 
with. the best fixed strategy u(zn). 

Theorem 1: Under Assumption A, for every zn, 

u(zn) I ii(zn) L u(zn) + - [ln(n) + 11, K 
n (8) 

where K is as in (7). 
The theorem tells us that applying the best strategy b * ( P t - l )  

for the data observed so far is not as good as the best 
fixed strategy, but it results in an average loss which is only 
O(n-l logn) far away from optimdity. 

Proof of Theorem 1: The proof is similar to these in [21] 
and [46] and brought here for the sake of completeness. The 
theorem follows from two simple inequalities due to Hannan 
[21] (see also Gilliland [14]) that follow directly from the 
definition of b*(P) as a'minimizer of the loss. First, note that 
by the definition of b* (P), 

n - u(zn) 
n 

t = l  
n 

t = l  
n-1 

= I ( b * ( P n - 1 ) , 2 t )  + Z(b*(Pn - l ) , z t )  
t = l  
n-1 

t = l  
n-2 

t = l  t=n-1 

and so forth, ending up with 
n 

n . u(zn) I I (b*(Pt - l ) ,  zt)  = n - ii(zn), (10) 

which completes the proof of the left inequality of Theorem 1. 
As for the right inequality, similarly to (9) and (lo), we have 

t-1 

n-1 

n ' u(zn> = c t = l  Z(b*(P,) ,zt)  + Z(b*(Pn),zn) 
n-1 

L Z(b*(P , - l ) , s t )  + l(b*(P,),z,) 
t=l 
n -2  n 

t=1 t=n--1 
n-2 n 

t = l  t=n-1 

(11) 

and so forth, ending up .with 
n 

By Assumption A and the fact that Pt = (1 - t - l ) P t - l  + 
t-l6,, , we have 

(13) 
K 

IZ@*(Pt - l ) , z t )  - W * ( P t ) , 2 t ) l  I t' 
Hence, the right-hand side of (12) is further underbounded as 
follows. 

. n  

K " 1  
t 

= 'iL(z") - - -. 
t = l  

Finally, since 

0 the proof of Theorem 1 is complete. 

Assumption A (and similarly, assumptions made in [14], 
[16], [21]), though satisfied for a reasonably wide class of loss 
functions Z ( 9 ,  .), is somewhat more demanding than necessary 
in the Sense that it does not cover all these examples and yet 
the theorem holds for all of them. This assumption, however, 
makes the proof of the theorem intuitively appealing. It is 
based upon the following simple idea: If zt was available 
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before the tth strategy had to be selected, then an average 
loss smaller than that of the best fixed strategy could have 
been achieved. Nonetheless, although xt is yet unavailable 
when the tth decision is to be made, one can still approximate 
faithfully b*(Pt) by b* (Pt-1) under appropriate continuity 
conditions. Furthermore, the approximation error, and hence 
also the loss in performance, behaves normally like l /t ,  whose 
time-average over t = 1,2, .  . . , n, is O(n-l logn). We now 
examine the examples described in Section I in the light of 
Theorem 1 and demonstrate that in some of these examples 
Assumption A is violated. 

The logarithmic loss function (2), which arises in data com- 
pression and gambling applications, clearly does not satisfy 
condition A. Intuitively, however, the theorem still holds here 
because when pt - l (O)  is small (and hence, I logpt-l(O) I is 
large), then by definition, the relative frequency of zeros is 
small as well and hence their overall effect to the average 
n-l E:', logpt-l(xt) is negligibly small. 

The universal portfolio selection problem is associated with 
the function Z(b, z) = - log(b#x) (see Section I), which again 
suffers from a singularity problem about the origin. This can 
be avoided if it is assumed that the components of xt lie in 
some interval [a, c], 0 < a 5 c < 00. Indeed, this assumption 
is made in [6] and hence the condition A holds. It should 
be pointed out that the sequential strategy selection procedure 
proposed in [6] is slightly different from b*(Pt-l), but it is 
asymptotically equivalent. 

The prediction problem [12] involves a zero-one loss func- 
tion which is discontinuous, and hence obviously cannot 
satisfy the condition A. As an alternative to the definition of 
this loss function, one can define Z(b,z)  of [12] by 

where $(b)  is a prediction error indicator, namely, a unit step 
function at b = 1/2 and B = [0,1]. Indeed, it is easy to 
see that if b*(Pt-l) = nt(0)/t converges to the discontinuity 
point, then the theorem does not hold. Specifically, in [21], 
[46], [51] it has been shown that the this discontinuity causes 
the convergence to slow down to O(n-lI2).  For this reason, 
$(b)  is approximated in [12] by a continuous function q5e(b) 
where the step is smoothed by a finite-slope line in the interval 
b E [1 /2 -~ ,  1 / 2 + 4  and the values of &(b) between zero and 
one correspond to randomization. For & ( e ) ,  however, there 
is no longer a continuous minimizer b*(P), and again the 
condition A is violated. Nevertheless, it is proved in [12] 
that b* (Pt-1) is asymptotically eoptimal using techniques 
different from those of the proof of Theorem 1. 

For the prototype problems of sequential prediction, where 
2(b,x) = 1% - b(", a > 0, and sequential VQ design (see 
Section I) with I ( b , z )  = 1% - Qa(z)la, Condition A is met 
if the measurements {xt} are bounded uniformly, which is 
a fairly mild requirement in practice (see also Gilliland [14], 

So far we have considered sequential schemes that compete 
successfully with any fired strategy. In the remaining part of 
the paper, we shall extend Theorem 1 and further investigate 

P51). 

properties of more interesting competing schemes that consist 
of a certain amount of memory of past data. 

111. DETERMINISTIC FINITE-STATE MACHINES 

A commonly-used model for sequential machines with a 
limited amount of storage is a finite-state machine (FSM). A 
sequential decision strategy based on an M-state FSM is a 
triple E = (S ,  f ,  g ) ,  where S is a finite set of states with M 
elements, f : S --f B is the outputfunction, and g : X x S + S 
is the next-state function. When an input sequence 2 1 ,  22, . . 
is fed into E, starting with an initial state SO E S, this 
FSM produces a sequence of output strategies bl , b2,  . while 
going through a sequence of states, S I ,  s2, e . according to the 
recursive rules 

S t  = g(xt -1 ,  S t - 1 )  (16a) 
bt = f ( S t ) ,  (16b) 

where st is the state of E at time t. This model has been 
adopted in all aforementioned applications where the input 
alphabet is finite, e.g., noiseless data compression [53], gam- 
bling [ll], and prediction [12]. Although FSM's may be useful 
in some continuous input alphabet applications as well, e.g., 
linite-state vector quantization (FSVQ) [19], we shall assume 
in this section that the input alphabet X is b i te .  

The fixed strategy case, considered in Section 11, is a special 
case of (16) where M = 1. For a given next-state function 
g ( . ,  .), Theorem 1 extends in a straightforward manner to the 
M-state model. Observe that for a given state s E S, the 
strategy b = f (s) is again fixed. Thus, for each subsequence 
z n ( s )  = {zt,t : st = s}, s E S, one can apply Theorem 1 and 
thereby asymptotically attain the least possible contribution 
of state s to the total average loss. Therefore, the minimum 
achievable average loss associated with a next-state function 
g with M states is given by 

where n g ( s )  is the relative frequency of state s in the state 
sequence sn = S I ,  s2,. , s, generated by g .  Consider the 
following sequential scheme: At each time instant t, first 
update the state by st = g(xt- l ,s t - l )  and then apply the 
strategy that best fits the observations seen so far that are 
associated with st,  namely, {z,,~ 5 t - 1 , ~  : s, = st } .  For 
an upper bound on the average loss Q ( z n ; g )  associated with 
this sequential procedure, one can apply Theorem 1 for each 
state separately (see also [12]). Since each state s contributes 
an unnormalized term of K[ln ng(s) + 11 to the upper bound, 
it follows that 

K 
ii(zn; g )  I u(zn; g )  + ; [In ng(s) + 11 

SES 

where for the last step we have used Jensen's inequality and 
the fact that CsES ng(s) = n. Thus, the optimal performance 
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for a given g(. ,  a )  is attained to within an 0 ( ~ 1 - ~ M l o g n / M )  
term. A more difficult problem, though, is to attain sequen- 
tially the performance of the best M-state machine, i.e., 
U M ( Z ~ )  = mingEGns u(z";g), where GM is the set of all 
MAM possible next-state functions associated with M-state 
machines. The minimizing g(. ,  e )  obviously depends on the 
entire sequence zn and hence cannot be found in a sequential 
manner but only by an exhaustive search over GM once the 
sequence zn is fully available. Nonetheless, in this section, it 
is shown, under some regularity conditions, that in the limit 
as M + 00 (with n >> M), it is sufficient to focus 
on Markovian machines for the purpose of asymptotically 
minimizing "(2"; g),  among all M-state machines. 

A 

Markovian Machines 
An important special case of an FSM (with M = Ak states) 

is the kth-order Markovian machine, for which the state st at 
time t is defined by the k preceding input letters, i.e., st = 
(x t -k ,  - .  e ,  xt-1) [7], [32], [39], [50]. When g is Markovian 
of order k, let us denote u(z";g) by u(z"; M M M k ) .  

Again, we shall formulate regularity conditions in terms 
of empirical probability measures. For two probability mass 
functions P and Q on X, let 

This quantity expresses the loss of optimality in applying 
a strategy b that best matches Q,.when the true underlying 
probability measure is P. Clearly, A(PIIQ) 2 0 with equality 
if P = Q, and (19) generalizes the notion of divergence in the 
sense that if l(. ,  e )  is as in (2), then A(PIIQ) D(PIIQ), 
the Kullback-Leibler informational divergence. We make the 
following assumption on A(PIIQ) which, in turn, induces an 
assumption on Z(., .). 

Assumption B: There exist positive constants C and S such 
that for every two probability mass functions P = { p ( ~ : > } ~ ~ x  
and Q = {q(x)}zGx on the finite alphabet X, 

where IIP - Q I I  i? 
variational distance between P and Q. 

CzEX Jp(x) - q(x)1, namely, the 

Observe that 

If Z(.,.) is bounded by a constant L, then the first term is 
smaller than L e 11 P - QII and the second term is the difference 
between the Bayes envelopes associated with P and with Q, 
respectively. Since the Bayes envelope is a concave functional 
of the underlying measure, it is also continuous, and hence the 
requirement that the second term would be bounded in terms 
of llP - & [ I 6 ,  where 6 > 0 is allowed to be arbitrarily small, 
is not highly restrictive. 

Theorem 2: If assumption B is met, then for every z" E 
X" and every two positive integers k and M, 

The proof appears in the Appendix. 
This is a generalized version of Theorem 2 in [12], which 

tells us that a kth-order Markovian machine of order k is 
within e as good as the best M-state machine, uniformly for 
every z", provided that k > 2Ce-2/6 1nM. It should be 
pointed out that this does not mean that in general M-state 
machines can be simulated by Markovian machines with suf- 
ficiently long memory (see [13, p. 1561 for a counterexample). 

Given an infinite sequence z = (x1,22,. .),'we define 

u,(z) = lim limsup min u(z";g). (22) 
M + m  "-03 S E G M  

This quantity, which depends solely on 2, is a generalization 
of both the jinite-state compressibility of Ziv and Lempel[53 1, 
where l ( + ,  .) is as in (2), and the finite-state predictability 
of [12], where l(. , .) is as in (15). The number u,(z) is 
by definition an asymptotic lower bound on the attainable 
performance of any FSM with arbitrarily many states, when 
fed with 2. 

In light of the previous results, given an infinite input 
sequence 2, and provided that the assumptions A and B are 
met, it is possible to attain um(z) using a machine with 
infinitely many states by chopping the data into exponentially 
growing segments, where at the kth segment, k = 1,2, . ., we 
use the next-state function of a kth-order Markovian machine 
and the appropriate sequential strategy as explained earlier. 
Following (18), after sufficiently long time, the average loss 
is essentially as low as that of the best Markovian machine 
with an arbitrarily long memory, which in turn (Theorem 2) is 
nearly as good as the best FSM with arbitrarily many states. 
An alternative policy of increasing k is the one induced by the 
incremental parsing procedure [53] applied to z. The reader 
is referred to [12, Sections IV, v] for more details concerning 
these two methods of increasing the order I C .  

It is interesting to relate the quantity u,(z) to the best 
achievable performance in the probabilistic setup, as was done 
in the special case of FS compressibility [53]. Algoet [2] has 
studied the sequential decision problem for a stationary ergodic 
input X I ,  Xp, e . a. One of the results in [2] is an extension 
of the Shannon-McMillan-Breiman theorem to the case of 
a general loss function Z(-, a). Specifically, let us extend the 
definition (6) to the form 

V ( X [ X k )  = j;LE{Z(b, XO)lX-1, f . .  ,X-k} (23) 

where we regard the input as a two sided process 
{ , XL 1 ,  XO,  X I ,  - + a }  using the shift invariance property. 
Now, let 

Under certain integrability conditions [2J U(XIXm) agrees 
with infb E{l(b,  Xo)JX-1, X-2,. .}. Nowi in Theorem 6 of 
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A [2] it has been shown that if A(z) = SupbeB I@, .)I satisfies 

E [A(X)  log:.' A(X) ]  < 00 

A where log+ a = max(0, log a}  and E is an arbitrarily small 
strictly positive number, then 

+ n  
1 - m. E z ( b ; ( X ; - l ) ,  X t )  = u(xlx-), 

t=l 
." 

almost surely and in L1, where b;( . )  achieves (or approaches) 
infb E{Z(b, Xt ) lXl ,  - - , Xt- l } .  Using this result and Theorem 
2 we can now relate uoo(z) to U(X(X").  

be a stationary ergodic process, 
and assume that the conditions (A), (B), and (25) are satisfied. 
Then, um(X1, X2,a-e) = U(X(Xw.)  almost surely. 

Theorem 3: Let X I ,  X, , 

The proof appears in the Appendix. 

Let us return to the deterministic setting where 2 1 ,  2 2 ,  - . 
is a given individual sequence. So far we have considered 
nonrandom FSM's, where the next-state function g and the 
output function f of (16) are deterministic. A natural possible 
extension (especially for gambling, prediction and investment 
applications), is obtained by letting f and g be szochastic 
functions, namely, replacing f and g by conditional probability 
distributions p( . ) s t )  and q(. I zt-l, st-l) for randomly select- 
ing bt and st.  The performance will then be judged on a statis- 
tical basis, e.g., the expected value of n-' l(bt, zt), or 
more generally, the expected value of $(n-l E,"=, I(bt,zt)) 
for some monotonically increasing function 4. (Note that 
the expectation is defined with respect to the ensemble of 
randomly chosen states and strategies while the sequence z 
is still considered hed.)  

The problem of designing a randomized FSM is that of se- 
lecting the best conditional probability distributions { p ( b l ~ ) } a , ~  
and {q(s I 2, s ' ) } ~ , ~ , ~ ~  so as to minimize the expected value of 
q5 for a particular sequence z, which is observed sequentially. 
Since the class of randomized FSM's c o n a s  deterministic 
FSM's as a subclass, it is not surprising that a good randomized 
FSM can do better, in general, than the best deterministic 
FSM with the same number of states. Indeed, randomized 
FSM's have been thoroughly investigated in certain applica- 
tions of statistical inference (see, e.g., [a]-[26], [34], [49], 
and references therein), and were shown to outperform their 
deterministic counterparts. In [34], for instance, it has been 
shown that a randomized M-state machine for estimating the 
probability of a Bernoulli process is equivalent to a deter- 
ministic FSM with as many as O(M log M) states. However, 
in these examples the difference in performance between 
deterministic and randomized FSM's disappears once the limit 
M + 00 (n >> M) is taken for both types of machines. 

It is interesting to investigate a similar question for the 
sequential decision problem considered here: In the limit of 
arbitrarily many states, are deterministic FSM's as good as 
randomized FSM's or, rather, can performance still be gained 
by using randomized FSM's? The answer to this question 

turns out to depend on the particular risk function q5 under 
consideration. 

Before we address this question, observe that with no 
loss in generality we can assume that the output function 
f is deterministic, i.e., p(b ( s )  puts its entire mass on b = 
f(s). To see this, recall that for a given state sequence 
s", the best deterministic strategy is derived from the joint 
empirical probability measure associated with (z",,") as 
explained in Section HI, and any other strategy will yield a 
higher loss. It follows that ahy randomization, which puts 
a positive probability on values of b other than the optimal 
value, will result in an average loss larger than that of the 
best deterministic output function. On the other hand, the 
randomization in q might be helpful as it allows in general 
all Mn possible state sequences rather than only one state 
sequence with a constrained structure as in the deterministic 
case. In view of these facts, we henceforth assume that f is 
deterministic, and thus the only randomization is due to q. 

Consider first the criterion of minimizing 

where Eq{.} denotes the expectation under q, and St denotes 
the random state at time t. We next show that deterministic 
FSM's with sufficiently many states are capable of doing 
nearly as well as any randomized FSM in the above sense. 
Specifdly,  we next extend Theorem 2 and prove that the best 
deterministic kth-order Markovian machine is to within E as 
good & the best randomized M-state machine for sufficiently 
large I C ,  but as in (21) it takes as many as Ak = @Cc-a's lnA 
states (where A is the alphabet size) for a Markov machine 
to guarantee successful competition with the best M-state 
randomized FSM. The following theorem summarizes this 
fact. 

Theorem 4: If assumption B is met, then for every zn E 
X" and every two integers k and M ,  

where FM is the class of all output functions f : S + B 
associated with IS( = M states and Q M  is the class of 
all conditional probability distributions {q(. I 2, S ) } ~ ~ X , ~ ~ S  
associated with randomized M-state machines. 

The proof appears in the Appendix. 

Theorem 4, therefore, enaliles one to extend the definition 
(22) to randomized FSM's and still attain the resulting lower 
bound using sequential Markov schemes that let k grow slowly 
with t, as described earlier. 

In certain applications of the sequential decision prob- 
lem, however, the criterion (27) is not really the relevant 
performance measure. In gamblhg and portfolio selection 
applications, for instance, a natural goal might be to maximize 
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the exponential growth rate of the expected fortune at time n, 
corresponding to 

1 n 

mpax ; 1% E,  exP2{- W S t ) ,  .t)} (29) 
t=l  

with the appropriate choice of the function Z(., a )  (see Section 
I). In data compression applications this criterion with Z(., a )  as 
in (2) corresponds to the negative normalized length function 
of a universal code for the class of finite-state sources, where 
the probability of an input string zn is given by 

I) 

where ~(01s) = f(s), ~(11s) = 1 - f(s), and f(s) E (0,l) .  
More generally, consider the performance criterion 

n 

that is, $(z)  = -2-nxz, which is an extension of both 
(27) (for X + 0) and (29) (for X = 1). Equation (31) 
is also the log-moment generating function of the random 
variable n-l l ( f ( S t ) , z t ) ,  and therefore if it can be 
minimized uniformly for all A > 0, this will yield a good 
large deviations behavior of n-l E:=, Z(f(St) ,  zt), because 
the expression in (31) plays a role in the Chernoff bound 
on Pr{n-’ Cy=l Z(f(St),zt) < p }  for every real p. This 
probability, in turn, is a reasonable objective function to 
maximize. 

It turns out that if one adopts (31) as a performance criterion, 
then randomized FSM’s may perform better than deterministic 
FSM’s even in the limit M + 00. Specifically, we next 
demonstrate by a counterexample that no matter how many 
states are allowed, there is no deterministic FSM that attains 
(31) uniformly for every X > 0. Assume that l ( b , z )  2 0 and 
z is such that um(z) > 0. Consider a randomized two-state 
FSM with q(s I q s ’ )  = 1/2, z E X, s, s’ E S. Then, 

. n  

Let X = S = B = {O,l}, f(0) = 0, f(1) = 1, and let 
l ( . , . )  be the Hamming distance. Thus, the first term on the 
right-most side of (32) is zero. Now, if X is chosen larger 
than l /um(z) ,  then we have demonstrated a simple two-state 
randomized machine for which 

while for the best deterministic FSM, the value -um(z) can- 
not be exceeded (by definition), even in the limit. The reason 

for this phenomenon is as follows. If X is very large, the ex- 
ponential risk function becomes sensitive to n-l Et Z(bt, zt). 
Thus, if there exists a state sequence that yields an average loss 
smaller than that of any deterministic FSM, then the gain in 
the exponential risk is so large that even if this state sequence 
possesses a low probability, its contribution to the expected 
risk is significant. 

In spite of this fact, it is interesting to note that, at least 
in the case where I ( . , . )  is as in (2) and X = 1, the best 
performance attainable by a randomized FSM in the sense 
of (31) can be still be approached by a sufficiently complex 
deterministic FSM. This follows from the fact [40], [54] that 
for any finite-state source of the form (30), - log P(z” )  2 
ULZ(Z~) - nen, where en + 0 and ULZ(Z~) is the codeword 
length function associated with Lempel-Ziv algorithm, which 
in turn is asymptotically lower bounded by the (deterministic) 
FS compressibility of the infinite sequence. 

Finally, we comment that there exists a universal ran- 
domized sequential scheme that asymptotically attains (31) 
uniformly for every X > 0. This scheme works as follows: 
At time instant t randomly select the next state st+l from the 
probability distribution 

nt-l(z, s, s’) + 1/2 
725-1(2,s’) + M/2 ’ pt (s t  = s lzt-1 = 2, st-1 = 3’) = 

(34) 
where nt-1(z,s,s’) is the joint count of (z7 = z,s,+1 = 
s,s, = s’) in (zt-l,st-’) and nt-l(z,s’) = C s E ~ n t - l  
(z, s, s’). The strategy at time t is chosen with respect to the 
subsequence {z,, T : s7 = s t ,  T 5 t - l}, as explained 
in Section 111. Note that (34) is in the spirit of the universal 
predictive measure developed in [45]. However, unlike in [45], 
(34) serves here as a random mechanism for selecting states 
w.r.t. a given deterministic rather than a random sequence. 

While the expected value of exp,{-XEy=, Z(f(St), zt ) }  
in this scheme is exponentially equivalent to m u q  Eq expz 
{-A CY=, l ( f (S t ) ,  zt)}, as shown in the Appendix, the main 
drawback of this scheme is that it does not have an “ergodic 
property” in the sense that (nX>-l log maxq Eq exp2{ - A  
Er=, Z ( f ( S t ) , z t ) }  is rarely attained. in a single experiment. 
The reason is that (34) induces a nonergodic probability 
distribution on sn. Intuitively, (34) describes a self-generating 
mechanism for selecting states in the sense that at each time 
instant t it depends on the past realizations SI, 5’2, - , St-1. 

Thus, if a certain state, for instance, is assigned a low 
conditional probability at an early time instant t, it will not be 
likely to appear later on, and hence its conditional probability 
will reduce even further resulting in a “positive feedback” 
effect, which makes the convergence to the optimal loss very 
unstable. 

A possible alternative to the above scheme which is appli- 
cable in gambling and investment applications is to divide the 
initial capital into a large number of portions corresponding 
to a sensibly dense finite grid of points in the space Q M  
of all possible M-state conditional distributions q, and to 
apply in parallel all randomized strategies associated with the 
grid pints. The exponential rate of the total fortune will be 
dominated by that of the best grid point Q M ,  which, in turn, 
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is close to optimum by continuity considerations. This idea is 
in the same spirit as in [6]. 

where the k-dimensional vector Kt is jointly updated with the 
inverse of the unnormalized autocorrelation ma& Pt = &-', 
(Rt)ij being Erst xr-ix7-j ,  in the following manner. 

v. PARAllilETRICSCHEMES 

sion problem considered here, e.g., linear prediction, filtering, 
system identification, vector quantization, portfolio selection 

(37) 
Pt-lEt 

In continuous-alphabet applications of the sequential deci- Kt = 
1 + E? Pt-lEt ' 

and 
etc., a natural analogue of the FSM that was studied in Section 
111 is the dynamical system model, described as in (16), where 
x t ,  st and bt are now interpreted as vectors in Euclidean 

# 
(38) 

Pt-lEtEt pt-1 Pt = Pt-1 - 
1 + E?Pt-l& ' 

A 
spaces, X = Et', S = E l k ,  and B = Etm. In particular, 
the case where f and g are linear mappings, i.e., where Et = (xt--1,- . . ,x t - -k) .  Let At denote the smallest 

eigenvalue of Rt t-l& and assume that I xt 15 G < 00 st = Ast-1 + Bxt-1 
(35a) for all t. Similarly to the proof of Theorem 1, we have that 

bt = CSt, (339 

where A, B and C are, respectively, k x k ,  k x 1 and 
m x k matrices, is of great interest, because of its mathematical 
tractability. Here, the class of allowed schemes is a parametric 
class, where the parameters are the entries of A, B and C, and 

l n  l n  

l n  

- (x t  - xyCt--l)2 2 - c (xt  - Efcn)2 
t=l t=l 

L ; (.t - E ? m 2 ,  (39) 
t=l the problem is again that of the best choice of these parameters 

SO as to mhimhe the time-average Of Some lOSS fun&On 
q b t ,  X t ) .  
An special case Of (35) is the linear Prediction 

problem 'where xt  and bt are scalars (1 = m = 11, A 
is a fixed k x k matrix, whose all entries are zero except 
for the lower off-diagonal entries which are set to unity, 
B = (1,0,0, - . - O)# is a k dimensional vector, and c is a 
dimensional vector whose elements { ~ i } t = ~  are to be chosen. 
In this case, bt = cizt-i, namely, a linear Markovian 
strategy depending Only on the k preceding letters. In the linear 
prediction problem bt plays the role of a linear predictor Pt  
of xt and its performance is pleasured by the squared error 
criterion I(b, x) = (x - b)2 (see , e.g., [15]). Observe that 
once the form of the predictor has been chosen, then the 

where the left-most side corresponds to the average squ;treed 
error associated with the RLS algorithm, the central expression 
is the average squared error of the best linear predictor 
calculated in batch, and the right-most side is associated with 
an auxiliary anticipating version of the RLS algorithm which 
has a m s s  to xt at time t .  Thus, the difference between the 
left-most side and the right-most side of (39) serves as an upper 
bound on the difference bemeen the average squared error of 
the RLS algorithm and that of the batch predictor. This in turn, 
is upper bounded as follows. Let Et = Zt - ,$ct. Then, A 

l n  x#Ct-1)2 - ; ( E t  - ZfCt)2 
1 
n - (.t - -t 

l n  

l n  

t=l t=l 

problem of minimizing n-l Er=, ( x t  - Et=, cixt-1)2 can 
be viewed again in the fixed strategy setup of Section 11, where 

developed in Section 11 to compare the performance of the 
recursive least squares (RLS) algorithm [18], [23] which best 
matches C = Ct at each time instant t to the data see n 
so far, with the batch procedure, which minimizes the time- 
average of the squared error along the entire sequence zn. 
By doing this, we find that the RLS algorithm is universal in 

is recursive there is an explicit expression for the difference 
Ct+' - Ct,  and hence the result of Theorem 1 can be further 

techniques similar to those developed in [15] with the special 

= - Ct-l)(Et + St)  
t=l 

we redefine the strategy b as C and the measurements It 
as vectors (xt--k, .  - - ,  x t ) .  Hence, one can use the techniques - - - i fKtSt(€t  + S t )  

t=l 

l n  Et # pt-1% 

4 Et %lEt 

n 5 1 + &Pt-lgt ISt * ( E t  + y 
# - - 1  

1st * (e t  + MI 

1st ( E t  + Q l  

= n 2 t=l t -  l+&q..& 
1 kG2/At-l  

kG2 

the sense of asymptotically attaining the minimum prediction 
error uniformly for bounded sequences zn . Since the algorithm ' n t -  1 

t=l 

1st * ( E t  + &)I. (40) 
1 

= - f: (t  - l ) A t - l  + kG2 developed here. We next demonstrate this point by combining 

structure of the RLS algorithm. 

estimate Ct = argminc 
the matrix inversion lemma. Specifically, 

t=l 

Suppose now that there exists a positive number A, such that 
At 2 A, for all sufficiently large t .  Since I xt 15 G by 
assumption, the instantaneous errors St and et are bounded as 
well, and (40) is bounded by an harmonic series similarly to 
(14) resulting in a bound proportional to kG2AG1n-' logn. 
Note, that even if At tends to zero but slower than l/t, then 
still (40) may decay with n but not as fast as n-l logn. 

The algorithm Provides recursively the instantaneous 
(G - E k  ci  ST-+)^ Using 

k 

i=l 

A Ct = Ct-' + Kt(xt -e cf-'xt-i) = Ct-' +KtSt, (36) 
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The sensitivity factor A;' (see also [6]) can be controlled by 
orthonormalizing the linear space spanned by all permissible 
predictors. Specifically, as an alternative to the linear predictor 
above, consider a predictor of the form 

r 

bt = Ci4*(xt-l,"',2t-k), (41) 
i=l 

where {$~;(.)}i=~ is a family of functions with disjoint sup- 
ports. For example, consider a uniform partition of [-G, G] 
to intervals of width A, which induces a uniform partition of 
[-G, GIk into k dimensional cubes. If c$i is defined as the 
indicator function of the ith cube, i = 1,2, .  . . , T = (2G/A)k, 
then (41) can approximate a wide class of nonlinear smooth 
functions on the k dimensional cube [-G, GIk, and at the 
same time the problem of selecting { ci}l=l is associated with 
solving linear equations, provided that the mean square error 
criterion is adopted. Furthermore, since {#i} are orthonormal, 
there is no need for matrix inversion and no sensitivity 
prablems occur. The weakness of (41) is of course the typically 
huge number of parameters T = (2G/A)l needed to cover 
faithfully the domain [-G, GIk resulting in a relatively large 
O(rlogn/n) term as in (18), 

APPENDIX 

For the proofs of the previous theorems, it will be more 
convenient to regard the average loss as a functional of the 
empirical measure extracted from (z", sn) (with respect to 
a given g) rather than a direct function of zn. To guarantee 
desirable shift invariant properties of these empirical measures 
(see also [12]), these will be defined with the cyclic convention 
that (x,, s,) precedes ($1, SI). In order that the state sequence 
will be cyclic as well, i.e., s1 = g(z,, s,), assume without loss 
of generality that g is irreducible (i.e., all states communicate) 
and add Z" with an appropriate suffix of length 1 (which is 
independent of n) such that s1 = g(x,+l,s,+l). Of course, 
for n >> 1 this suffix does not affect the empirical measure. 

The following notation will be used. Let ng(x, s) denote the 
joint count of xt = x and st = s in the pair sequence (zn, sn) 
with this cyclic convention. Let pg(z,s) = ng(x,s)/n, 

For a given s E S the conditional probability distribution 
{ p C ( x l ~ ) } ~ ~ x  will be denoted by Pi,,. When the state se- 
quence is not generated by a deterministic next-state function, 
i.e., in the randomized case, the superscript g will be omitted. 
Let X and S denote random variables governed by the joint 
probability distribution &(x, s). Note that u(zn; g )  can be 
rewritten as a functional of the empirical conditional distribu- 
tions Pi,, and hence, will be denoted also by U,S(XlS), i.e., 
a conditional Bayes envelope. Specifically, 

A 

e CZEXp9,(& SI, and Pg,(xb) e p9,(2, s)/Pg,(s>. 

When g is Markovian of order k, then u(zn;Mk) will be 
denoted also by Un(XIXk) ,  where Xk denotes a random 
k-tuple governed by the empirical probability of k-tuples 
extracted from zn. 

Proof of Theorem 2: The proof technique is similar to 
that of [12, Theorem 21. Let g be an arbitrary nextstate 
function of an M-state machine. Let Vi(X I Xk, S) be 
the conditional Bayes envelope associated with a combined 
( M  Ak)-state machine, where the current state is st = 
( s t - k ,  xt -k ,  x t -k+l ,  . , z t - p ) ,  S t - k  being the state (at time 
(t - k)) associated with g( . ,  a) .  Intuitively, this machine 
performs better than the M-state machine associated with 
g(. ,  .) because 

st = g"s3 = g k ( s t - k , Z t - k , . -  ,2t- l )  

A 
= g ( g ( " ' g ( s t - k , 2 t - k ) , Z t - k + l ) , " .  ,xt-1) 

is a many-to-one mapping from s: to st and hence s t  contains' 
more information of the past. Mathematically, we have 

U:(x I SI = p",(.> -%:,,V*(P,g,s),X) 
8 

= P:(s"~P~,.*~(b*(p~,,),X) 

L P:(sk)EP;,sk V*(Png,&), XI 

s sk: g k ( s " ) = s  

.9 s*: g k ( s k ) = s  

= U i ( X  19) = U,(XlX"S),  ( A 4  

where Sk is a randcm vector, governed by P,, consisting of 
Xk and the state S preceding Xk. In a similar manner it 
is obvious that Vi(X 1 Sk) 5 Un(X 1 Xk) but we show 
that the difference is small. To this end, we upper bound the 
difference Un(X I Xk) - Ui(X I SA). 

Let 0 5 j 5 k, and consider the difference between the 
associated empirical conditional Shannon entropies H, (X 1 
Xj)-H:(X I Sj), (which are obtained as a special case where 
z ( . ,  .) is logarithmic). Since Si contains Xj as a component, 

H,(X I Xj) - Hi(X 1 S j )  

7 2  

.93 

where we have used Pinsker's inequality [9, ch. 3, problem 
171 for the first inequality and the assumption of Theorem 2 
for the second. Next, assume without loss of generality that 
6 5 2. (If conversely, 6 > 2, then use llP-Q116 5 I(P-Q(ls-2 
IIP-Ql12 5 26-211P-Q112, absorb 26-2 in C, and set 6 = 2 in 
(20)). Thus, (A.2) can be further lower bounded using Jensen's 
inequality: 

1 
2C In 2 -- [V,(X 1 Xj) - Ui(X I Sj)I2'! (A.3) - 
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Finally, 

= (- 2C In 2 [H,(X"+l) - HZ(X"1 I s,]) 
k + l  

where the first inequality follows from the fact that condi- 
tioning reduces the Bayes envelope (similarly to (A.l)), the 
second inequality results from Jensen's inequality, and third 
inequality is implied by (A.3). Since g is an arbitrary M-state 

(7 

Proof of Theorem 3: >From Theorem 2 and the fact that a 
Markov strategy is a special case of a FS strategy it is apparent 
that an equivalent definition of u,(z) is 

machine this completes the proof of Theorem 2. 

U,(%) = lim limsupu(zn;Mk).  (A51 
k + m  n+m 

Since for any nonanticipating kth order Markov strategy [2, 
(3.611 

. n  

almost surely, then clearly, 

l imsupu(X1,. . . ,  Xn ;Mk)  2 U(XIXm), (A.7) 
n+m 

almost surely. By taking the limit as k + 00, we get 
u,(X1, Xz,. -) 1 U(XIXm). Thus, to complete the proof, 
it remains to show that converse inequality U, ( XI, XZ , . -) 5 
U(XIXw) also holds, almost surely. Let b*(xt--k, , xt-1) 
be the best kth-order Markov strategy in the sense of achieving 
the infimum of E{Z(b, Xt)lzt-k,. e ,  xt-l). Since u(zn;Mk) 
is attained by the best kth-order Markov strategy for the 
given individual sequence, it is clear that for every realization 
x1, XZ,"', 

 XI,***, x n ; M k )  I ; C l ( b * ( X t - k , * . * ,  Xt-l), X t ) .  

(A.8) 

l n  

t=l 

Now, by Birkhoff's ergodic theorem, the right hand side of 
(A.8) tends to U(XIXk) almost surely as n + 00. Thus, 

lim sup u(x1, - - , x n ;  Mk) 5 U(X~X')), ( ~ 9 )  

almost surely. Finally, by taking the limit as k + 00 on both 
sides of (A.9), we get u,(Xl, XZ, . . . )  I U(XIXm), which 

0 

n+w 

completes the proof of Theorem 3. 

Proof of Theorem 4: Note that 

(A.10) 

where &(x,s) = Eqpn(x,s) is a joint probability of x 
and s induced by the expected empirical measure Pn with 
respect to q. Let (X ,S ,S j )  be a triple of random variables 
induced by p9,, i.e., the expectations (w.r.t. q) of the relative 
frequencies of the joint events (xt = x,St. = 8,s: = sj}, 
x E X, s E S, sj E S x X', where Si  = (St-j,Xt-j, 
Xt- j+ l ,  * e ,  xt-1). Observe (A.ll) (see the equation at the 
bottom of the page) where Pr{.} is with respect to q. Equation 
(A.ll) implies that X e Sj e S is a Markov chain under p9,. 

A 

(A. 1 1) 
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e v:(x 1 S’), (A.12) Thus, for the randomized scheme considered here we have 

which is analogous of (A.l) with the deterministic next-state 
function g replaced by the randomized rule q. The rest of the 
proof is identical to the proof of Theorem 2, where p’s should 
be replaced by p’s, g’s are substituted by q’s, U’s are changed 
to V’s, and Shannon entropies are now defined with respect 
to pz. 0 

The Performance of the Proposed Universal 
Randomized Scheme 

We first derive an upper bound on (31) and then demonstrate 
that our scheme attains this upper bound asymptotically. For 
every randomized M-state machine, we have 

r n 1 

(A.13) 

where Un(X 1 S) is defined for a given state sequence sn, 
similarly to U,S(X I S), but with respect to the empirical 
probability distribution {pn(x, s ) } , ~ x ,  s E ~  induced by the 
pair sequence (zn,sn). Hn(S I X,Sl) is the empirical 
conditional Shannon entropy associated with the empirical 
probability distribution 

p,(X = 2, s = s, s’ = s’) 
= n-l 6(x t  = Z, st+l = s, st = s’). 

t 

n 
+AUn(X I S)]} - O ( x  log %), (A.16) 

which agrees with the upper bound (A.13) up to a term of 
O(M/n log n/M). Since the scheme does not depend on A 
it attains (31) uniformly. 
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